Перспективы России в области искусственного интеллекта
Ведущие эксперты — о реалистичности ожиданий в отношении создания конкурентоспособных на мировом рынке подходов и технологий в области искусственного интеллекта, машинного обучения, языковых моделей.

Шансы на прорыв реальны
Эксперты, к которым мы обратились, оптимистично оценивают перспективы развития ИИ в России. О завоевании «мирового господства» в этой области никто из них не говорит, но прорыв, по крайней мере, по некоторым направлениям ИИ вполне возможен.
Александр Тютюнник, заместитель генерального директора, директор по развитию бизнеса ГК Luxms, считает, что в России достаточно ресурсов (интеллектуальных, вычислительных, финансовых) для серьезного прорыва в области ИИ. «Точками опоры» для этого станут активное импортозамещение, передовой уровень цифровизации в ряде секторов, а также высокий уровень развития математики, статистики и их использование в различных прикладных областях на протяжении десятилетий. Ключевым направлением прорыва может стать решение задач, в которых традиционные подходы математики не сработают (в силу объема, многоплановости и многофакторности этих задач), но могут быть использованы отдельные статистические и математические методы или методы моделирования данных. Примерами таких задач могут служить, например, прогнозирование кредитоспособности клиентов и оценка вероятности дефолта заемщиков в банках, борьба с мошенническими операциями и т.д.
По каким направлениям можно ожидать успехов
На российском рынке есть множество направлений использования ИИ, на которых возможен если не прорыв, то, по крайней мере, успех, уверены эксперты. Этому способствует не только уход западных игроков с российского рынка, но и активная поддержка со стороны государства в сочетании с высоким интересом к ИИ-решениям и инвестициями в них со стороны бизнеса.
По мнению Александра Тютюнника, на любом производственном предприятии, даже не очень крупном, найдутся десятки направлений, где модели машинного обучения могут дать быстрый эффект. Например, построенные на базе ИИ предиктивные модели для технического обслуживания и ремонта (ТОРО, ТОиР) производственного оборудования помогут заблаговременно выявлять узлы и агрегаты, которые могут вскоре выйти из строя.

Корпоративный сектор уже осваивает ИИ
Эксперты приводят и множество других примеров того, как с помощью механизмов ИИ российские компании решают свои задачи.
В частности, по словам Александра Тютюнника, Департамент здравоохранения Москвы использует предиктивную аналитику для построения прогнозов заболеваемости по разным срезам, контроля загрузки больниц, стационаров и поликлиник. А одна крупная производственная компания встраивает языковую модель интеллектуального поиска, чтобы помогать техническим экспертам быстро находить нужную информацию во внутренних документах, регламентах и нормативах.

Тютюнник уверен, что принятие технологий ИИ обязательно произойдет и будет массовым: «Руководство крупных компаний достаточно быстро осознает, что традиционная надежда на одного или нескольких экспертов уже не оправдывается хотя бы потому, что все очень сильно усложнилось. Очень важно при этом подчеркивать, что цель внедрения ИИ — не заменить экспертов, а помочь им. Так что заказчики готовы. Но, конечно, требуется время на изменения — в первую очередь менталитета».